Role of the type 1 TNF receptor in lung inflammation after inhalation of endotoxin or Pseudomonas aeruginosa.
نویسندگان
چکیده
To determine the roles of the type 1 tumor necrosis factor (TNF) receptor (TNFR1) in lung inflammation and antibacterial defense, we exposed transgenic mice lacking TNFR1 [TNFR1(-/-)] and wild-type control mice to aerosolized lipopolysaccharide or Pseudomonas aeruginosa. After LPS, bronchoalveolar lavage fluid (BALF) from TNFR1(-/-) mice contained fewer neutrophils and less macrophage inflammatory protein-2 than BALF from control mice. TNF-α, interleukin-1β, and total protein levels in BALF as well as tissue intercellular adhesion molecule-1 expression did not differ between the two groups. In contrast, lung inflammation and bacterial clearance after infection were augmented in TNFR1(-/-) mice. BALF from infected TNFR1(-/-) mice contained more neutrophils and TNF-α and less interleukin-1β and macrophage inflammatory protein-2 than that from control mice, but protein levels were similarly elevated in both groups. Lung inflammation and bacterial clearance were also augmented in mice lacking both TNF receptors. Thus TNFR1 facilitates neutrophil recruitment after inhalation of lipopolysaccharide, in part by augmenting chemokine induction. In contrast, TNFR1 attenuates lung inflammation in response to live bacteria but does not contribute to increased lung permeability and is not required for the elimination of P. aeruginosa.
منابع مشابه
Evaluation of the role of TLR4 in endotoxin-induced hepatic encephalopathy in rats with biliary cirrhosis
Background: Hepatic encephalopathy is defined as a neuropsychiatric brain dysfunction in acute or chronic liver failure. Infection and inflammation have crucial role in its pathophysiology. The purpose of our study was to demonstrate the relationship between toll-like receptor 4 (TLR4) expression and the encephalopathy induced with endotoxin in biliary cirrhotic rats. Methods: The present stud...
متن کاملRedundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa.
Activation of pulmonary defenses against Pseudomonas aeruginosa requires myeloid differentiation factor 88 (MyD88), an adaptor for Toll-like receptor (TLR) signaling. To determine which TLRs mediate recognition of P. aeruginosa, we measured cytokine responses of bone marrow cells from wild-type mice and mice lacking TLR2 (TLR2(-/-)), TLR4 (TLR4(-/-)), TLR2 and TLR4 (TLR2/4(-/-)), or MyD88 (MyD8...
متن کاملPseudomonas aeruginosa colonization enhances ventilator-associated pneumonia-induced lung injury
BACKGROUND Pseudomonas aeruginosa (PA) is the single-most common pathogen of ventilator-associated pneumonia (VAP). Large quantities of PA in the trachea of ventilated patients are associated with an increased risk of death. However, the role of PA colonization in PA VAP-induced lung injury remains elusive. This study examined the effect and mechanism of PA colonization in VAP-induced lung inju...
متن کاملRole of Toll-like receptor 5 in the innate immune response to acute P. aeruginosa pneumonia.
Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and an important pathogen in patients with chronic lung disease, such as cystic fibrosis and bronchiectasis. The contribution of Toll-like receptor 5 (TLR5) to the innate immune response to this organism is incompletely understood. We exposed wild-type and TLR5-deficient (Tlr5(-/-)) mice to aerosolized P. aeruginosa at low...
متن کاملPulmonary inflammation induced by Pseudomonas aeruginosa lipopolysaccharide, phospholipase C, and exotoxin A: role of interferon regulatory factor 1.
Chronic pulmonary infection with Pseudomonas aeruginosa is common in cystic fibrosis (CF) patients. P. aeruginosa lipopolysaccharide (LPS), phosholipase C (PLC), and exotoxin A (ETA) were evaluated for their ability to induce pulmonary inflammation in mice following intranasal inoculation. Both LPS and PLC induced high levels of tumor necrosis factor alpha (TNF-alpha), interleukin 1 beta (IL-1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 276 5 شماره
صفحات -
تاریخ انتشار 1999